RESEARCH PROFILE

Tom de Greef is Full Professor Synthetic Biology at the department of Biomedical Engineering. Work in the Synthetic Biology group (8 PhD students, 2 post-docs) is directed at the bottom-up construction of basic cellular functions from well-characterized biological components, and the development of novel biological computing devices that can enhance signal-processing capabilities of natural and synthetic cells. This involves the design and construction of integrated genetic, protein or DNA-based circuits, either in a cell-free environment or in living cells, capable of autonomously performing useful functions. To achieve this goal, a multidisciplinary approach is employed that combines elements from DNA/RNA nanotechnology, genetic engineering, microengineering and the modelling and simulation of biomolecular networks. Ultimately, advances in synthetic biology will allow the development of functional living and hybrid technologies such as biological robots, synthetic cells or augmented natural cells, that can be interfaced with the human body to detect disease biomarkers and allow autonomous, closed-loop therapeutic functions. 

Synthetic biology can help address key challenges facing the planet and its population. Research in synthetic biology may lead to new technologies such as programmed cells that self-assemble at the sites of disease to repair damage.

ACADEMIC BACKGROUND

Tom de Greef studied Biomedical Engineering at Eindhoven University of Technology (TU/e, the Netherlands), where he received his MSc degree cum laude in 2004. He then started his PhD research at the TU/e department of Chemical Engineering and Chemistry, where he graduated in 2009 on a thesis on novel polymeric materials based on quadruple hydrogen-bonding motifs, supervised by professors E. W. (Bert) Meijer and Rint Sijbesma. He subsequently moved to the Computational Biology group at the TU/e department of Biomedical Engineering (TU/e) headed by Prof. Peter Hilbers, for postdoctoral research on self-assembling systems from a computational perspective. In 2010, he became assistant professor, in 2016 associate professor and in 2022 he was promoted to full professor Synthetic Biology. In 2013, Tom de Greef was a visiting scholar in the group of Prof. David Weitz at Harvard University (Cambridge, USA), working on protein affinity screening using droplet microfluidics.

In 2012 and 2013 the Netherlands Organization of Scientific Research (NWO) awarded him a VENI grant and an ECHO-STIP grant, respectively. He received an ERC Starting Grant in 2015 an NWO VIDI grant in 2016 and an ERC Consolidator Grant in 2020. Tom de Greef is a core member of the Institute for Complex Molecular Systems (ICMS), a core member of the Dutch Gravitation program "Functional Molecular Systems" and a junior faculty member of the Gravitation program "Materials-Driven Regeneration". He is a founding member of the Eindhoven Young Academy of Engineering and a member of De Jonge Akademie since 2019. He received the 2017 Cram Lehn Pedersen prize in supramolecular chemistry, and in 2018 he was awarded a Microsoft PhD scholarship for the development of micromaterials for DNA datastorage.