Degree structure

The Science and Technology of Nuclear Fusion master’s degree is a two-year, 120 ECTS credits program. It comprises mandatory core courses, specialist fusion courses, free electives, an internship and a final project. 

Compulsory core courses  

20 ECTS  

Fusion specialization courses  

25 ECTS  

Free Electives  

15 ECTS  

External internship  

15 ECTS  

Graduation project  

45 ECTS  

Compulsory core courses

The compulsory courses are designed to develop the toolbox of skills needed by modern fusion engineers.  

  • Fusion on the back of an envelope 
  • Homologation for fusion 
  • Magnetic confinement and MHD of fusion plasmas 
  • Fusion reactors: extreme materials, intense plasma wall interaction

Fusion specialization courses

The fusion specialization courses combine theoretical knowledge with hands-on lab experience. They include two courses developed specifically for this program: 

  • Fusion masterclasses (2 topics of one week each, topics are elective) 
  • Heating and diagnosing fusion plasmas 

In addition, you must select 10 ECTS credits worth of fusion-related electives, which can be selected from a wide range of options offered through the Applied Physics, Mechanical Engineering and Electrical Engineering departs. 

Applied Physics courses:  

  • Advanced fluid dynamics 
  • Astrophysics  
  • Accelerators and beams 
  • Advanced computational fluid and plasma dynamics  
  • Computational and mathematical physics  
  • Advanced Plasma Physics
  • Subatomic Physics
  • Electrodynamics
  • Advanced Electrodynamics
  • Physics of plasmas and radiation
  • Photonics and modern optics
  • Optical diagnostics: techniques and applications

Mechanical Engineering courses 

  • Control and operation of tokamaks 
  • Control of magnetic instabilities in fusion plasmas 
  • Control engineering  
  • Optimal control and dynamic programming 
  • Advanced motion control 
  • Embedded motion control 
  • Non-linear control  
  • Advanced computational continuum mechanics 
  • Computational and experimental micromechanics  
  • Fracture Mechanics
  • System Theory for Control
  • Sustainable Energy Sources

Electrical Engineering courses 

  • Modelling dynamics 
  • Robust control 
  • Model predictive control 
  • Embedded control systems 
  • Microwave engineering and antennas 
  • Power quality phenomena 
  • Power electronics 
  • Terahertz systems 
  • High-voltage technology
  • Statistical Signal Processing
  • Electrical Components
  • Power System Analysis and Optimization
  • Planning and Operation of Power Systems
  • Pulsed Power Technology
  • Electrical power engineering and system integration

Free electives

These can be chosen from all master and third-level bachelor courses offered at the TU/e or elsewhere (provided they are of a sufficiently high level).